Effects of Anaplasma phagocytophila on NADPH oxidase components in human neutrophils and HL-60 cells.
نویسندگان
چکیده
The human granulocytic ehrlichiosis agent, Anaplasma phagocytophila, resides and multiplies exclusively in cytoplasmic vacuoles of granulocytes. A. phagocytophila rapidly inhibits the superoxide anion (O(2)(-)) generation by human neutrophils in response to various stimuli. To determine the inhibitory mechanism, the influence of A. phagocytophila on protein levels and localization of components of the NADPH oxidase were examined. A. phagocytophila decreased levels of p22(phox), but not gp91(phox), p47(phox), p67(phox), or P40(phox) reactive with each component-specific antibody in human peripheral blood neutrophils and HL-60 cells. Double immunofluorescence labeling revealed that p47(phox), p67(phox), Rac2, and p22(phox) did not colocalize with A. phagocytophila inclusions in neutrophils or HL-60 cells, and p22(phox) levels were also reduced. A. phagocytophila did not prevent either membrane translocation of cytoplasmic p47(phox) and p67(phox) or phosphorylation of p47(phox) upon stimulation by phorbol myristate acetate. The inhibitory signals for O(2)(-) generation was independent of several signals required for A. phagocytophila internalization. These results suggest that rapid alteration in p22(phox) induced by binding of A. phagocytophila to neutrophils is involved in the inhibition of O(2)(-) generation. Absence of colocalization of NADPH oxidase components with the inclusion further protects A. phagocytophila from oxidative damage.
منابع مشابه
Repression of rac2 mRNA expression by Anaplasma phagocytophila is essential to the inhibition of superoxide production and bacterial proliferation.
Anaplasma phagocytophila, the etiologic agent of human granulocytic ehrlichiosis, is an emerging bacterial pathogen that invades neutrophils and can be cultivated in HL-60 cells. Infected neutrophils and HL-60 cells fail to produce superoxide anion (O(2)(-)), which is partially attributable to the fact that A. phagocytophila inhibits transcription of gp91(phox), an integral component of NADPH o...
متن کاملEffects of Anaplasma phagocytophilum on host cell ferritin mRNA and protein levels.
Ferritin is a major intracellular iron storage protein and also functions as a cytoprotectant by sequestering iron to minimize the formation of reactive oxygen species. Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium that colonizes neutrophils. We have previously reported that human promyelocytic HL-60 cells infected with...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملPhagocytosis of Streptococcus pyogenes by All-Trans Retinoic Acid-Differentiated HL-60 Cells: Roles of Azurophilic Granules and NADPH Oxidase
BACKGROUND New experimental approaches to the study of the neutrophil phagosome and bacterial killing prompted a reassessment of the usefulness of all-trans retinoic acid (ATRA)-differentiated HL-60 cells as a neutrophil model. HL-60 cells are special in that they possess azurophilic granules while lacking the specific granules with their associated oxidase components. The resulting inability t...
متن کاملAldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells
Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 70 3 شماره
صفحات -
تاریخ انتشار 2002